Ядерная и радиационная безопасность. 2000, №4, 82-86.

Радіаційні ефекти в молекулярних системах

Кондратенко П.О., Лопаткін Ю.М., Шовкопляс О.А.

Анотація

Раніше було виявлено, що опромінення тонкоплівкових полімерних систем, що містять сулему, високоенергетичними квантами випромінювання (~3 кеВ) із подальшою витримкою їх у парах аміаку (NH₃) призводить до появи продукту чорного кольору, що є передумовою для реєстрації інформації за допомогою випромінювання.

Для вивчення механізмів радіаційно-хімічних процесів проведені квантово-хімічні розрахунки енергетичної структури сулеми, потенціальної поверхні основного, збудженого й іонізованого стану сулеми, а також комплексів продуктів розпаду сулеми з аміаком. Показано, що найбільш ймовірним механізмом радіаційно-хімічних процесів є збудження молекули сулеми вторинними електронами в дисоціативний стан, що в остаточному підсумку призводить до утворення молекули з оптимізованою структурою Cl-Hg-Hg-Hg-Hg-Cl, що повинна поглинати світло в області 430 нм, а її комплекс з оптимізованою структурою на молекули аміаку - 620 нм. Оскільки у твердих шарах не завжди є можливість утворення оптимальної структури, остання смуга, як показують розрахунки, буде розширена на всю видиму область спектра, що забезпечить чорний колір опроміненої ділянки після її витримки в парах аміаку.

Експериментальні дані свідчать [1,2], що опромінювання тонкоплівкових водорозчинних полімерних систем, які містили сулему (HgCl₂), високоенергетичними квантами випромінювання(~3 кеВ) з подальшою витримкою його в парах аміаку (NH₃) приводить до появи продукту чорного кольору, що є передумовою для реєстрації інформації за допомогою випромінювання.

Дослідження радіаційних ефектів проведено на тонкоплівкових (товщина ~100 мкм) зразках, які містили близько 90 мас.% полівінілового спирту, решта - сулема. Опромінювання здійснювалось через товстостінну металеву маску з отворами на рентгенівському апараті (50 кВ). Для проявлення зображення в місцях опромінювання плівку витримували декілька хвилин в парах аміаку.

Спектр поглинання зразків записували на спектрофотометрі Specord M-40.

Прозорі та безбарвні полімерні зразки з сулемою товщиною 0,05-0,15 мм містили в спектрі поглинання смуги в ультрафіолетовій області спектру з максимумом λ =232 нм та λ <200 нм. Опромінені та проявлені в парах аміаку зразки були чорного кольору (поглинання у вигляді суцільного фону без вираженої структури). Якщо зразок опромінювався до 15 хвилин, то зображення згодом зникало, а якщо більш 15-20 хвилин,-то воно згодом навіть неначебто посилювалося.

В даній роботі для визначення механізмів радіаційнохімічних процесів у продовження роботи [3] проведені квантово-хімічні дослідження з використанням сучасних методів, зокрема РМ1 - метод самоузгодженого поля з конфігураційною взаємодією, який дозволяє отримати результати, близькі до реальних. В даній роботі буде розглядатися лише перший етап, тобто до 15 хвилин опромінювання. Другий етап вимагає залучення та обрахування інших механізмів і буде розглянутий пізніше.

Досліджена енергетична структура сулеми (рис.1). Результати розрахунків наведені в табл.1:

Таблиця 1.

Тип квантового переходу	Довжина хвилі, нм	Сила осцилятора
$S_0 \rightarrow T_1 \qquad \pi_2 \rightarrow \sigma_1^*$	468.0	0

$(-2 \rightarrow 0 + -1 \rightarrow 0)$		
$S_0 \rightarrow S_1 \pi_2 \rightarrow \sigma_1^*$	454.9	0,0000
$(-2 \rightarrow 0 + -1 \rightarrow 0)$		
$S_0 \rightarrow S_2 \pi_1 \rightarrow \sigma_1^*$	430.6	0,0000
(-4→0+ -3→0)		
$S_0 \rightarrow T_3 \sigma_4 \rightarrow \sigma_1^*$	421.1	0
(-5→0)		
$S_0 \rightarrow S_4 \sigma_3 \rightarrow \sigma_1^*$	298.8	0.5468
(-6→0)		
$S_0 \rightarrow S_n \qquad \pi_2 \rightarrow \pi^* (-1 \rightarrow 2)$	162.6	0.5544
$+-2\rightarrow 3)+\sigma_4\rightarrow\sigma_1^*(-5\rightarrow 1)$		

Як випливає з рис.2, потенціальна поверхня третього триплетного стану ($S_0 \rightarrow T_3$) з видовженням одного Cl-Hg-зв'язку суттєво знижується, перетинаючи всі потенціальні поверхні всіх інших збуджених станів. Отже, квантовий $\sigma_4 \rightarrow \sigma_1^*$ -перехід виявився дисоціативним. При безпосередньому такому збудженні молекули відбудеться дисоціація з великим квантовим виходом.

Якщо ж збудження локалізується на S_1 чи T_1 - станах, тоді дисоціація молекули можлива при перенесенні збудження з цих квазістаціонарних станів на дисоціативний стан. Такий процес називається предисоціацією. Логічно припустити, що збудження молекули в усі ці стани можливе лише завдяки породженню в об'ємі зразка електронів первинної чи вторинної іонізації з відповідною енергією. Безпосереднє поглинання високоенергетичного кванта не зможе призвести до збудження в дисоціативний стан.

Оскільки в об'ємі породжуються електрони, то можливий їх захват молекулою сулеми з утворенням аніона $HgCl_2$. Розрахунки (рис.3) показують, що в термалізованому стані дисоціації аніона перешкоджає потенціальний бар'єр висотою порядку 1 еВ. Цей бар'єр нижчий, ніж в молекулі сулеми, оскільки енергія спорідненості електрона до продуктів дисоціації більша, ніж до молекули (крива E_A на рис.3), але достатньо високий для заморожування процесу дисоціації, внаслідок чого слід чекати радіаційно-хімічних процесів лише з нетермалізованого стану. Проте, не варто повністю відмовлятися від можливості дисоціації з нерівноважного стану аніона. Дисоціація аніона сулеми приведе до утворення аніона хлору та хімічно активної частинки Cl-Hg, як і в попередньому випадку.

В усіх випадках продуктом реакції є HgCl, спектр поглинання якого, як і комплексу з аміаком, охоплює видиму область спектра, проте характеризується дуже низьким коефіцієнтом екстинкції. Утворена частинка (HgCl) буде нестабільною і швидко рекомбінує з утворенням молекули каломелі (Cl-Hg-Hg-Cl). Дослідження показують, що ні каломель, ні її комплекси з аміаком не мають навіть слабких смуг поглинання у видимій області спектру (як правило, довгохвильова інтенсивна смуга поглинання всіх продуктів лежить в області 300 нм).

Таким чином, хімічна активність Cl-Hg приведе до їхньої бімолекулярної рекомбінації з утворенням молекули каломелі (Cl-Hg-Hg-Cl). Для опису експериментальних даних проведені подальші дослідження з каломеллю. Подальше протікання радіаційно-хімічних процесів за участю молекули каломелі повинно привести до утворення активної частинки Cl-Hg-Hg та продуктів рекомбінації активних частинок: Cl-Hg-Hg-Cl та Cl-Hg-Hg-Hg-Hg-Cl. Така молекула з оптимізованою структурою повинна поглинати світло в області 430 нм.

Розрахунки спектрів поглинання Cl-Hg_n-Cl наведені в таблиці 2: Таблиця 2.

Молекула	Тип квантового переходу	Сила осцилятора
	і довжина хвилі в смузі	
	поглинання, λ, нм	
	$S_0 \rightarrow T_1 = 481,2$	0,000
Cl-Hg-Hg-Cl	$S_0 \rightarrow S_1 = 342,06$	0,000
	$S_0 \rightarrow S_3 310,8$	0,802
Cl-Hg-Hg-Hg-Cl	$S_0 \rightarrow T_1$ 568,19	0,000
	$S_0 \rightarrow S_1 = 371,92$	0,847
Cl-Hg-Hg-Hg-Hg-Cl	$S_0 \rightarrow T_1 848,16$	0,000
	$S_0 \rightarrow S_1 = 434,57$	0,795

З таблиці 2 видно, що від довгої молекули Cl-Hg_n-Cl з n≥4 можна чекати появи смуг поглинання у видимій області спектру.

Оскільки з експерименту випливає, що забарвлення плівки стає суттєвим при витримуванні опроміненого зразка в парах аміаку, ми провели розрахунки і комплексів утворених молекул з аміаком (Cl-Hg_n-Cl)•nNH₃. Результати розрахунків наведені в таблиці 3.

Порівняння даних табл.2 і табл.3 показує, що утворення комплексів з молекулами аміаку приводить до появи жовтого забарвлення зразка з комплексом (Cl-Hg-Hg-Hg-Hg-Cl)• 3NH₃ і голубого забарвлення зразка з комплексом (Cl-Hg-Hg-Hg-Cl)•4NH₃. Більше того, оскільки зв'язок сполуки Cl-Hg_n-Cl з молекулами аміаку слабкий, то в твердому шарі структура комплексу не обов'язково має оптимальну геометрію. А це приведе до розширення смуги поглинання в короткохвильовий бік. В результаті поглинання комплексу (Cl-Hg-Hg-Hg-Cl)•3NH₃ розтягнеться в ультрафіолетовий бік, а комплексу (Cl-Hg-Hg-Hg-Cl)•4NH₃ - на всю видиму область спектра, даючи сіре (чорне) зображення. Тривале витримування проявленого зразка на повітрі приводить до випарування аміаку і зникнення поглинання у видимій області спектру. Таблиця 3

Молекула	Тип квантового переходу	Сила осцилятора
	і довжина хвилі в смузі	
	поглинання, λ, нм	
	$S_0 \rightarrow T_1 = 445,48$	0,000
Cl-Hg-Hg-Cl - 2NH ₃	$S_0 \rightarrow S_1 = 286,72$	0,488
Cl-Hg-Hg-Hg-Cl - 3NH ₃	$S_0 \rightarrow T_1 = 809,92$	0,000
	$S_0 \rightarrow S_1 = 433,67$	0,628
Cl-Hg-Hg-Hg-Hg-Cl - 4NH ₃	$S_0 \rightarrow T_1$ 1973,0	0,000
	$S_0 \rightarrow S_1 = 635,84$	0,739

Таким чином, на підставі проведених експериментальних та теоретичних досліджень радіаційно-хімічних процесів в полімерних шарах, що містять сулему, можна зробити такі висновки:

- найбільш ймовірним радіаційно-хімічним процесом в молекулі сулеми є її дисоціація з триплетного σσ*-стану, який можна отримати шляхом прямого електронного збудження чи предисоціації з нижнього триплетного πσ*-стану;
- захват електрона молекулою сулеми приведе до утворення аніона, який в рівноважному стані характеризується потенціальною ямою з глибиною порядку 1 еВ, що буде заважати процесу дисоціації; процес дисоціації аніона можливий з нерівноважного стану;

- активні частинки, які утворюються в процесі радіаційно-хімічного процесу, маючи малі габарити, а отже і велику рухливість, швидко рекомбінують з утворенням спочатку молекули каломелі, а при подальшому опромінюванні зразка - довгих молекул, що містять ≥ 3 атомів ртуті;
- витримування опроміненого зразка в парах аміаку приводить до утворення слабких комплексів внаслідок донорно-акцепторної взаємодії атомів ртуті з молекулами аміаку; важливою властивістю утворених комплексів є їхнє поглинання у видимій області спектру, що приводить до проявлення зображення в парах аміаку.

Література

- Кондратенко П.А., Лопаткин Ю.М., Неселевская О.В. Радиационно-физические процессы в средах для регистрации информации и оценка уровня качества сред //Тез. докл. I Всесоюз. школа по термодинамике и технологии полупроводниковых кристаллов и пленок, Ивано-Франковск, 4-14 октября 1986 г., ч.П.- Ив-Франковск.-1986.-С.160.
- 2. Джос І.Ю., Лопаткін Ю.М. Пострадіаційні ефекти в полімерних шарах/ В кн.: Наукові праці, серія фізика твердого тіла. СДПІ. Суми, 1993. С.70-75.
- 3. Лопаткин Ю.М., Кондратенко П.А., Шовкопляс О.А. Энергетическая структура молекулы HgCl₂ //Вісник Сумського державного університету.- 1997.-№2(8).-С.43-48.

Аннотация

Ранее было обнаружено, что облучение тонкопленочных полимерных систем, содержащих сулему, высокоэнергетическими квантами излучения (~3 кэВ) с дальнейшей выдержкой их в парах аммиака (NH₃) приводит к появлению продукта черного цвета, что является предпосылкой для регистрации информации с помощью излучения.

Для изучения механизмов радиационно-химических процессов проведены квантовохимические расчеты энергетической структуры сулемы, потенциальной поверхности основного, возбужденного и ионизированного состояния сулемы, а также комплексов продуктов распада сулемы с аммиаком. Показано, что наиболее вероятным механизмом радиационно-химических процессов является возбуждение молекулы сулемы вторичными электронами в диссоциативное состояние, что в конечном итоге приводит к образованию молекулы с оптимизированной структурой Cl-Hg-Hg-Hg-Hg-Cl, которая должна поглощать свет в области 430 нм, а ее комплекс с оптимизированной структурой на молекулы аммиака - 620 нм. Поскольку в твердых слоях не всегда есть возможность образования оптимальной структуры, последняя полоса, как показывают расчеты, будет расширена на всю видимую область спектра, что обеспечит черный цвет облученного участка после ее выдержки в парах аммиака.

Рис.1. Енергетична структура HgCl₂ структура молекулярних орбіталей.

Рис.2. Криві потенціальної поверхні HgCl₂.в залежності від довжини Hg-Cl-зв'язку. Рис.3.Криві потенціальної поверхні HgCl₂ і HgCl₂, а також енергія спорідненості (E_A) електрона до HgCl₂ в залежності від довжини Hg-Cl-зв'язку.